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Hydrogenation of OS, (CO),( pL3-CPh)( pr-COMe) (1) at one atmosphere results in 
alkylidyne-alkylidyne coupling, forming the alkyne complex (~-H)20s3(C0)9( p3, 
v2-C,(OMe)Ph) (3). Reduction of 1 by two equiv. of sodium benzophenone ketyl, 
followed by protonation with tetrafluoroboric acid, yields the phenylacetylide 
complex (~-H)OS,(CO),(~~,~~-CCP~) (4). Sequential reduction/protonation in- 
volving (p-H)Os,(CO),,(~,-CPh) (2) also generates 4, apparently via 
benzylidyne-carbonyl coupling. 

Mathieu and coworkers have :recently reported the reversible interconversion 
between the dialkylidyne complex Fe,(CO)&,-CMe)&-COEt) and the alkyne 
complex Fe,(CO),,( p3 ,q*-C,(OEt)Me) [l]. Related reversible dialkylidyne cou- 
pling/alkyne scission processes have been illustrated in the isoelectronic 
Cp,Co,(CR)(CR’) system [2] and with a trinuclear mixed-metal complex 
Cp,W20s(CO),(C2To12) [3]. Recently, we prepared the first dialkylidyne triosmium 
complex, Os,(CO)&,-CPh)(p,-COMe) (1) [4], as a coproduct with 
(Cc-H)Os,(CO),&,-CPh) (2) [5].-We now report examples of alkylidyne-alkylidyne 
coupling with 1 as well as a related alkylidyne-carbonyl coupling reaction with 2 
(see Scheme 1). 

Compound 1 undergoes CO substitution in refluxing toluene, when treated with 
PPh, or 13C0 (l-4 atm); at higher temperatures CO treatment causes disruption of 
the metal triangle and formation ,of OS, compounds [6]. However, hydrogenation of 
1 in toluene at 110°C generates the alkyne complex (~-H)20~3(CO)g(~3,q2- 
C,(OMe)Ph) (3) together with (CL-H),Os,(CO),(~,-COMe) (5) [7]. The ratio of 
these two products is pressure dependent; yields are 55 and 12% at 1 atm and 23 
and 54% at 4 atm, respectively. Spectroscopic data for 3 (FDMS, m/e 962, M+; IR: 
v(CO), 2109(w), 2079(vs), 2055(vs), 2023(vs), 2005(s), 1986(m) cm-‘; ‘H NMR 
(CD&l,, -3O“C); 7.1 (m,C,H,), 3.62 (s&X,), - 17.44 (s&Z), -20.56 (s,p-H)) 
are in close agreement with those for (~-H)20s3(CO),(~3,q2-C2Ph2) [8], which is 

not observed as a product. The crystal structure of H,Ru,(CO)&,,TJ*-C,(OMe)Me) 
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SCHEME 1. 

has been determined [9]. Finally, treatment of Os,(CO),(p,-* CPh&-*COMe) 
[each *C ca. 50% 13C) with hydrogen gives (~-H)20s3(C0)9(~3,n2-*CPh*COMe), 
the 13C NMR spectrum of which shows signals for the alkyne carbons at S 197.1 
(C-OMe) and 80.0 (C-Ph) ppm with ‘J(C-C) 27 Hz. Assignment of the alkyne 
carbons is, based on the chemical shifts reported for alkoxy-substituted alkynes, 
R-(3=-C--OR’, in which K-R are found well upfield of *-OR [lo] and the 
alkylidyne carbon shifts observed in 1 (8 319.4, C-OMe; 234.6 ppm, C-Ph) [6]. 

(4) 

Since the transformation of 1 into 3 is formally a two-electron reduction process, 
we have sought to approach &same results by first reducing 1 directly, followed by 
protonation. However, slow addition of sodium benzophenone ketyl solution (25 
mM in THF, 2 equiv.) to 1 at room temperature under nitrogen, followed by 
protonation (HBF,, 1 M in Et,O, 5 equiv.), instead produces the known phenyl- 
acetylide complex (p-H)Os,(CO),(~,,q*-CCPh) (4) [11], isolated in 95% yield. The 
13C NMR spectrum of 4 generated from 0s3(*C0)&-*CPh&-*COMe) shows 
that the acetylide ‘carbon at 6 134.5 ppm and the phenyl-substituted carbon at S 
67.6 ppm are coupled, with ‘J(C-C) 51 Hz [12]. On the other hand, formation of 
(p-H)Os,(*CO),(p,,q*-CCPh) from Os,(*CO),(#JPh)(~,-COMe) shows that 
the phenylacetylide complex is indeed derived from coupling of the two alkylidyne 
moieties. This last result rules out the possibility of alkylidyne-carbonyl coupling in 
the formation of 4 from 1 (cf. [13]), but we were moved to investigate this possibility 
with (CL-H)Os,(CO),,(~,-CPh) (2). In fact, sequential treatment of 2 with sodium 
benzophenone ketyl solution and tetrafluoroboric acid in a fashion identical to that 
described above yields 4 in 90% yield as the only observed product. 

The reductive coupling involving 1 is readily interpreted in terms the alkyne 
complex [Os,(CO),(C,(OMe)Ph)]*~ as an intermediate with subsequent protona- 
tion of this species occurring both on the methoxy group (releasing methanol) and 
on the metal framework to give 4. Similarly, the transformation of 2 into 4 likely 
involves benzylidyne-carbonyl coupling, generating [HOs,(CO),(C,(O)Ph)]*-, fol- 
lowed by double protonation at the oxygen and loss of water. The bridging hydride 
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is not involved, since protonation with CH,CO,D yields 4 without deuterium 
incorporation. Our observation is closely related to results reported by Mathieu that 
reduction of [Fes(CO),&-CMe)]- leads to [Fe,(CO),(~,,n2-CCMe)l_ via [Fe,- 
(CO),(C(3,q2-C(0)CMe)]2P [14]. Furthermore, Shriver and coworkers have shown 
that two-electron reduction of [M3(CO),&,-COC(O)Me)]- gives [M,(CO)&- 
CCO)12- (M = Fe, Ru, OS), apparently via alkylidyne-carbonyl coupling concom- 
itant with loss of an acetate group [15]. Finally, Deeming, et al., have observed 
similar addition/elimination reactions of nucleophiles with the triosmium acetylide 
complex HOs,(CO),(CCH) [16]. 
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